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Artificial Intelligence 

• The capacity of a computer to perform 
operations analogous to learning and decision 
making in humans, as by an expert system, a 
program for CAD or CAM, or a program for the 
perception and recognition of shapes in 
computer vision systems 



Business Intelligence 

• The process of gathering information about a 
business or industry matter; a broad range of 
applications and technologies for gathering, 
storing, analyzing, and providing access to 
data to help make business decisions 

• BI  



Computational Intelligence 

• An offshoot of artificial intelligence. As an 
alternative to GOFAI (Good Old-Fashioned 
Artificial Intelligence) it rather relies on 
heuristic algorithms such as in fuzzy systems, 
neural networks and evolutionary 
computation. In addition, computational 
intelligence also embraces techniques that use 
Swarm intelligence, Fractals and Chaos Theory, 
Artificial immune systems, Wavelets, etc 



Traditional Artificial Intelligence… 

• Success 

– Chess playing 

– Mathematical theorem prove 

– Expert systems 

• Failure 

– Face Identification 

– Natural Language processing 

– Robotics 



Symbolic Artificial Intelligence 

• Symbol processing 

• Logic programming 

• List processing 

• Top down 

• High level processing 



Distributed Artificial Intelligence 
• Grounded in experience 

• Information held in a distributed manner 

• Information held locally 

• Bottom up 

• No overall control 

• Learn from experience 

• Based on Biological Models 

 
– Artificial Neural Networks 

– Genetic Algorithms 

– Artificial Life 



Artificial Neural Networks  

• Forecast time series 

• Control robots 

• Pattern recognition 

• Noise removal 

• Digit recognition 

• Personal identification 

• Optimise portfolios 

• Data mining 



Genetic Algorithms  

• Based on evolution 

• Survival of the fittest 

• The survivors get more chances to breed 

• The species becomes fitter generation by 
generation    … but so do the enemies 

• Change is inherent in the process 

• Applications: 
– Optimisation in general 

– Traveling Salesman Problem 

– Timetables 

– Best shares portfolio 



Artificial Life  

• Mixture of evolution and learning 

• Evolution of Language 

• Evolution of Cooperation 

 



Computational Intelligence 

• Defining "Computational Intelligence" is not 
straightforward. Several expressions compete to 
name the same interdisciplinary area.  

• It is difficult, if not impossible, to accommodate in 
a formal definition disparate areas with their own 
established individualities such as fuzzy sets, 
neural networks, evolutionary computation, 
machine learning, Bayesian reasoning, etc. 



• "Computational Intelligence" is rather the intuition 
behind the synergism between these and many more, 
at the verge of Computer Sciences, Mathematics and 
Engineering. Bringing together diverse expertise and 
experience can enrich each of the participating 
discipline and foster new research perspectives in 
the broad field of Computational Intelligence. 
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Soft Computing 

• According to Prof. Zadeh: 

• "...in contrast to traditional hard computing, 

soft computing exploits the tolerance for 

imprecision, uncertainty, and partial truth 

to achieve tractability, robustness, low 

solution-cost, and better rapport with 
reality” 



Artificial Neural Nets Genetic Programming 

Evolutionary Artificial Neural Nets 

Non-Linear and Non-Parametric Modeling 

Linear  and Parametric Modeling 
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Learning 

 Learning is a fundamental and essential 
characteristic of biological neural networks.  

 The ease with which they can learn led to 
attempts to emulate a biological neural 
network in a computer. 



3 main types of learning  

• Supervised learning  

– learning with a teacher  

• Unsupervised learning  

– Learning from pattern 

• Reinforcement learning 

– Learning through experiences 



Machine Learning 

• Machine learning involves adaptive 
mechanisms that enable computers to learn 
from experience, learn by example and learn 
by analogy.  Learning capabilities can improve 
the performance of an intelligent system over 
time.  

• The most popular approaches to machine 
learning are artificial neural networks and 
genetic algorithms. 



How the brain works 

• A neural network can be defined as a model of reasoning 
based on the human brain.  The brain consists of a densely 
interconnected set of nerve cells, or basic information-
processing units, called neurons.   

• The human brain incorporates nearly 10 billion neurons and 
60 trillion connections, synapses, between them.  By using 
multiple neurons simultaneously, the brain can perform its 
functions much faster than the fastest computers in existence 
today. 

• Each neuron has a very simple structure, but an army of such 
elements constitutes a tremendous processing power.   

• A neuron consists of a cell body, soma, a number of fibers 
called dendrites, and a single long fiber called the axon. 



Biological neural network 
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• Our brain can be considered as a highly 
complex, non-linear and parallel information-
processing system.   

• Information is stored and processed in a 
neural network simultaneously throughout 
the whole network, rather than at specific 
locations.  In other words, in neural networks, 
both data and its processing are global rather 
than local. 



Artificial Neural Networks 

• An artificial neural network consists of a number of 
very simple processors, also called neurons, which 
are analogous to the biological neurons in the brain.  

• The neurons are connected by weighted links passing 
signals from one neuron to another.   

• The output signal is transmitted through the 
neuron’s outgoing connection.  The outgoing 
connection splits into a number of branches that 
transmit the same signal.  The outgoing branches 
terminate at the incoming connections of other 
neurons in the network. 



Architecture of an ANN 
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Biological Neural Network Artificial Neural Network
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The neuron as a simple computing element 

Diagram of a neuron 
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 The neuron computes the weighted sum of the input 

signals and compares the result with a threshold 

value, .  If the net input is less than the threshold, 

the neuron output is –1.  But if the net input is greater 

than or equal to the threshold, the neuron becomes 

activated and its output attains a value +1. 

 The neuron uses the following transfer or activation 

function: 
 

 

 

 This type of activation function is called a sign 

function. 
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Activation functions of a neuron 
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Perceptron 

• In 1958, Frank Rosenblatt  introduced a training algorithm 
that provided the first procedure for training a simple ANN: a 
perceptron.   

• The perceptron is the simplest form of a neural network.  It 
consists of a single neuron with adjustable synaptic weights 
and a hard limiter. 

• The operation of Rosenblatt’s perceptron is based on the 
McCulloch and Pitts neuron model.  The model consists of a 
linear combiner followed by a hard limiter.  

• The weighted sum of the inputs is applied to the hard limiter, 
which produces an output equal to +1 if its input is positive 
and 1 if it is negative. 
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 The aim of the perceptron is to classify inputs,  

 x1, x2, . . ., xn, into one of two classes, say  

 A1 and A2.   

 In the case of an elementary perceptron, the n-

dimensional space is divided by a hyperplane into 

two decision regions.  The hyperplane is defined by 

the linearly separable function: 
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Linear separability in the perceptrons 
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 This is done by making small adjustments in the 

weights to reduce the difference between the actual 

and desired outputs of the perceptron.  The initial 

weights are randomly assigned, usually in the range 

[0.5, 0.5], and then updated to obtain the output 

consistent with the training examples. 

How does the perceptron learn its classification 

tasks? 



 If at iteration p, the actual output is Y(p) and the 

desired output is Yd (p), then the error is given by: 

 

        where p = 1, 2, 3, . . . 

  

 Iteration p here refers to the pth training example 

presented to the perceptron. 

 If the error, e(p), is positive, we need to increase 

perceptron output Y(p), but if it is negative, we 

need to decrease Y(p). 

)()()( pYpYpe d 



The perceptron learning rule 

where p = 1, 2, 3, . . . 

 is the learning rate, a positive constant less than 

unity. 
 

The perceptron learning rule was first proposed by 

Rosenblatt in 1960.  Using this rule we can derive  

the perceptron training algorithm for classification  

tasks. 
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Step 1: Initialisation 

 Set initial weights w1, w2,…, wn and threshold  

to random numbers in the range [0.5, 0.5].  
 

 If the error, e(p), is positive, we need to increase 

perceptron output Y(p), but if it is negative, we 

need to decrease Y(p). 

Perceptron’s training algorithm 



Step 2: Activation 

 Activate the perceptron by applying inputs x1(p), 

x2(p),…, xn(p) and desired output Yd (p).  

Calculate the actual output at iteration p = 1 

 

 

 

 where n is the number of the perceptron inputs, 

and step is a step activation function. 

Perceptron’s training algorithm (continued) 












 



n

i

ii pwpxsteppY

1

)( )()(



Step 3: Weight training 

 Update the weights of the perceptron 

 

 

 where  wi(p) is the weight correction at iteration p. 
 

 The weight correction is computed by the delta 

rule: 

Step 4: Iteration 

 Increase iteration p by one, go back to Step 2 and 

repeat the process until convergence. 

)()()1( pwpwpw iii 

Perceptron’s training algorithm (continued) 
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Example of perceptron learning: the logical operation AND 
Inputs

x1 x2

0

0

1

1

0

1

0

1

0

0

0

Epoch
Desired
output

Yd

1

Initial

weights
w1 w2

1

0.3

0.3

0.3

0.2

0.1

0.1

0.1

0.1

0

0

1

0

Actual
output

Y

Error

e

0

0

1

1

Final

weights
w1 w2

0.3

0.3

0.2

0.3

0.1

0.1

0.1

  0.0

0

0

1

1

0

1

0

1

0

0

0

2

1

0.3

0.3

0.3

0.2

0

0

1

1

0

0

1

0

0.3

0.3

0.2

0.2

  0.0

  0.0

  0.0

  0.0

0

0

1

1

0

1

0

1

0

0

0

3

1

0.2

0.2

0.2

0.1

  0.0

  0.0

  0.0

  0.0

  0.0

  0.0

  0.0

  0.0

0

0

1

0

0

0

1

1

0.2

0.2

0.1

0.2

  0.0

  0.0

  0.0

  0.1

0

0

1

1

0

1

0

1

0

0

0

4

1

0.2

0.2

0.2

0.1

  0.1

  0.1

  0.1

  0.1

0

0

1

1

0

0

1

0

0.2

0.2

0.1

0.1

  0.1

  0.1

  0.1

  0.1

0

0

1

1

0

1

0

1

0

0

0

5

1

0.1

0.1

0.1

0.1

  0.1

  0.1

  0.1

  0.1

0

0

0

1

0

0

0

0.1

0.1

0.1

0.1

  0.1

  0.1

  0.1

  0.1

0

Threshold:  = 0.2; learning rate:  = 0.1


