

INTELLIGENT SYSTEMS (CSE-303-F)

Section D

Machine Learning

Outline

• Artificial intelligence in 21st century

• Learning

• Machine learning

• Supervised learning

• How brain works

• Neural network and Artificial neural networks

• Simple neuron - Perceptron

Artificial Intelligence

• The capacity of a computer to perform
operations analogous to learning and decision
making in humans, as by an expert system, a
program for CAD or CAM, or a program for the
perception and recognition of shapes in
computer vision systems

Business Intelligence

• The process of gathering information about a
business or industry matter; a broad range of
applications and technologies for gathering,
storing, analyzing, and providing access to
data to help make business decisions

• BI

Computational Intelligence

• An offshoot of artificial intelligence. As an
alternative to GOFAI (Good Old-Fashioned
Artificial Intelligence) it rather relies on
heuristic algorithms such as in fuzzy systems,
neural networks and evolutionary
computation. In addition, computational
intelligence also embraces techniques that use
Swarm intelligence, Fractals and Chaos Theory,
Artificial immune systems, Wavelets, etc

Traditional Artificial Intelligence…

• Success

– Chess playing

– Mathematical theorem prove

– Expert systems

• Failure

– Face Identification

– Natural Language processing

– Robotics

Symbolic Artificial Intelligence

• Symbol processing

• Logic programming

• List processing

• Top down

• High level processing

Distributed Artificial Intelligence
• Grounded in experience

• Information held in a distributed manner

• Information held locally

• Bottom up

• No overall control

• Learn from experience

• Based on Biological Models

– Artificial Neural Networks

– Genetic Algorithms

– Artificial Life

Artificial Neural Networks

• Forecast time series

• Control robots

• Pattern recognition

• Noise removal

• Digit recognition

• Personal identification

• Optimise portfolios

• Data mining

Genetic Algorithms

• Based on evolution

• Survival of the fittest

• The survivors get more chances to breed

• The species becomes fitter generation by
generation … but so do the enemies

• Change is inherent in the process

• Applications:
– Optimisation in general

– Traveling Salesman Problem

– Timetables

– Best shares portfolio

Artificial Life

• Mixture of evolution and learning

• Evolution of Language

• Evolution of Cooperation

Computational Intelligence

• Defining "Computational Intelligence" is not
straightforward. Several expressions compete to
name the same interdisciplinary area.

• It is difficult, if not impossible, to accommodate in
a formal definition disparate areas with their own
established individualities such as fuzzy sets,
neural networks, evolutionary computation,
machine learning, Bayesian reasoning, etc.

• "Computational Intelligence" is rather the intuition
behind the synergism between these and many more,
at the verge of Computer Sciences, Mathematics and
Engineering. Bringing together diverse expertise and
experience can enrich each of the participating
discipline and foster new research perspectives in
the broad field of Computational Intelligence.

Computational

 Intelligence

Physics

SA

EC

ANN

Machine

Learning

Dtree

Soft Computing

• According to Prof. Zadeh:

• "...in contrast to traditional hard computing,

soft computing exploits the tolerance for

imprecision, uncertainty, and partial truth

to achieve tractability, robustness, low

solution-cost, and better rapport with
reality”

Artificial Neural Nets Genetic Programming

Evolutionary Artificial Neural Nets

Non-Linear and Non-Parametric Modeling

Linear and Parametric Modeling

The Family Tree

Grey Model

Rough Sets

Fuzzy Logic

FSA DTree LPM

KNN

SOM

State Space Wavelets

Foruier

SVM

MLPN

Neural Networks

GP

GA

SA

ANT

SWARM

EP

ES

Evolutionary Computation

Computational Intelligence

Learning

 Learning is a fundamental and essential
characteristic of biological neural networks.

 The ease with which they can learn led to
attempts to emulate a biological neural
network in a computer.

3 main types of learning

• Supervised learning

– learning with a teacher

• Unsupervised learning

– Learning from pattern

• Reinforcement learning

– Learning through experiences

Machine Learning

• Machine learning involves adaptive
mechanisms that enable computers to learn
from experience, learn by example and learn
by analogy. Learning capabilities can improve
the performance of an intelligent system over
time.

• The most popular approaches to machine
learning are artificial neural networks and
genetic algorithms.

How the brain works

• A neural network can be defined as a model of reasoning
based on the human brain. The brain consists of a densely
interconnected set of nerve cells, or basic information-
processing units, called neurons.

• The human brain incorporates nearly 10 billion neurons and
60 trillion connections, synapses, between them. By using
multiple neurons simultaneously, the brain can perform its
functions much faster than the fastest computers in existence
today.

• Each neuron has a very simple structure, but an army of such
elements constitutes a tremendous processing power.

• A neuron consists of a cell body, soma, a number of fibers
called dendrites, and a single long fiber called the axon.

Biological neural network

Soma Soma

Synapse

Synapse

Dendrites

Axon

Synapse

Dendrites

Axon

Axon hillock

• Our brain can be considered as a highly
complex, non-linear and parallel information-
processing system.

• Information is stored and processed in a
neural network simultaneously throughout
the whole network, rather than at specific
locations. In other words, in neural networks,
both data and its processing are global rather
than local.

Artificial Neural Networks

• An artificial neural network consists of a number of
very simple processors, also called neurons, which
are analogous to the biological neurons in the brain.

• The neurons are connected by weighted links passing
signals from one neuron to another.

• The output signal is transmitted through the
neuron’s outgoing connection. The outgoing
connection splits into a number of branches that
transmit the same signal. The outgoing branches
terminate at the incoming connections of other
neurons in the network.

Architecture of an ANN

Input Layer Output Layer

Middle Layer

I
n
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

O
 u

 t
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

Biological Neural Network Artificial Neural Network

Soma

Dendrite

Axon

Synapse

Neuron

Input

Output

Weight

Analogy between biological and

artificial neural networks

The neuron as a simple computing element

Diagram of a neuron

Neuron Y

Input Signals

x1

x2

xn

Output Signals

Y

Y

Y

w2

w1

wn

Weights

 The neuron computes the weighted sum of the input

signals and compares the result with a threshold

value, . If the net input is less than the threshold,

the neuron output is –1. But if the net input is greater

than or equal to the threshold, the neuron becomes

activated and its output attains a value +1.

 The neuron uses the following transfer or activation

function:

 This type of activation function is called a sign

function.





n

i

iiwxX

1 








X

X
Y

 if ,1

 if ,1

Activation functions of a neuron

Step function Sign function

+1

-1

0

+1

-1

0X

Y

X

Y

+1

-1

0 X

Y

Sigmoid function

+1

-1

0 X

Y

Linear function










0 if ,0

0 if ,1

X

X
Y step










0 if ,1

0 if ,1

X

X
Y sign

X

sigmoid

e
Y




1

1 XY linear 

Perceptron

• In 1958, Frank Rosenblatt introduced a training algorithm
that provided the first procedure for training a simple ANN: a
perceptron.

• The perceptron is the simplest form of a neural network. It
consists of a single neuron with adjustable synaptic weights
and a hard limiter.

• The operation of Rosenblatt’s perceptron is based on the
McCulloch and Pitts neuron model. The model consists of a
linear combiner followed by a hard limiter.

• The weighted sum of the inputs is applied to the hard limiter,
which produces an output equal to +1 if its input is positive
and 1 if it is negative.

Threshold

Inputs

x1

x2

Output

Y

Hard

Limiter

w2

w1

Linear

Combiner



Single-layer two-input perceptron

 The aim of the perceptron is to classify inputs,

 x1, x2, . . ., xn, into one of two classes, say

 A1 and A2.

 In the case of an elementary perceptron, the n-

dimensional space is divided by a hyperplane into

two decision regions. The hyperplane is defined by

the linearly separable function:

0

1




n

i

iiwx

Linear separability in the perceptrons

x1

x2

Class A2

Class A1

1

2

x1w1 + x2w2   = 0

(a) Two-input perceptron. (b) Three-input perceptron.

x2

x1

x3
x1w1 + x2w2 + x3w3   = 0

1
2

 This is done by making small adjustments in the

weights to reduce the difference between the actual

and desired outputs of the perceptron. The initial

weights are randomly assigned, usually in the range

[0.5, 0.5], and then updated to obtain the output

consistent with the training examples.

How does the perceptron learn its classification

tasks?

 If at iteration p, the actual output is Y(p) and the

desired output is Yd (p), then the error is given by:

 where p = 1, 2, 3, . . .

 Iteration p here refers to the pth training example

presented to the perceptron.

 If the error, e(p), is positive, we need to increase

perceptron output Y(p), but if it is negative, we

need to decrease Y(p).

)()()(pYpYpe d 

The perceptron learning rule

where p = 1, 2, 3, . . .

 is the learning rate, a positive constant less than

unity.

The perceptron learning rule was first proposed by

Rosenblatt in 1960. Using this rule we can derive

the perceptron training algorithm for classification

tasks.

)()()()1(pepxpwpw iii  

Step 1: Initialisation

 Set initial weights w1, w2,…, wn and threshold 

to random numbers in the range [0.5, 0.5].

 If the error, e(p), is positive, we need to increase

perceptron output Y(p), but if it is negative, we

need to decrease Y(p).

Perceptron’s training algorithm

Step 2: Activation

 Activate the perceptron by applying inputs x1(p),

x2(p),…, xn(p) and desired output Yd (p).

Calculate the actual output at iteration p = 1

 where n is the number of the perceptron inputs,

and step is a step activation function.

Perceptron’s training algorithm (continued)












 



n

i

ii pwpxsteppY

1

)()()(

Step 3: Weight training

 Update the weights of the perceptron

 where wi(p) is the weight correction at iteration p.

 The weight correction is computed by the delta

rule:

Step 4: Iteration

 Increase iteration p by one, go back to Step 2 and

repeat the process until convergence.

)()()1(pwpwpw iii 

Perceptron’s training algorithm (continued)

)()()(pepxpw ii 

Example of perceptron learning: the logical operation AND
Inputs

x1 x2

0

0

1

1

0

1

0

1

0

0

0

Epoch
Desired
output

Yd

1

Initial

weights
w1 w2

1

0.3

0.3

0.3

0.2

0.1

0.1

0.1

0.1

0

0

1

0

Actual
output

Y

Error

e

0

0

1

1

Final

weights
w1 w2

0.3

0.3

0.2

0.3

0.1

0.1

0.1

 0.0

0

0

1

1

0

1

0

1

0

0

0

2

1

0.3

0.3

0.3

0.2

0

0

1

1

0

0

1

0

0.3

0.3

0.2

0.2

 0.0

 0.0

 0.0

 0.0

0

0

1

1

0

1

0

1

0

0

0

3

1

0.2

0.2

0.2

0.1

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

0

0

1

0

0

0

1

1

0.2

0.2

0.1

0.2

 0.0

 0.0

 0.0

 0.1

0

0

1

1

0

1

0

1

0

0

0

4

1

0.2

0.2

0.2

0.1

 0.1

 0.1

 0.1

 0.1

0

0

1

1

0

0

1

0

0.2

0.2

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

0

1

1

0

1

0

1

0

0

0

5

1

0.1

0.1

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

0

0

1

0

0

0

0.1

0.1

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

Threshold:  = 0.2; learning rate:  = 0.1

